Pin TQFT and Grassmann integral

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral Lattices in Tqft

We find explicit bases for naturally defined lattices over a ring of algebraic integers in the SO(3)-TQFT-modules of surfaces at roots of unity of odd prime order. Some applications relating quantum invariants to classical 3-manifold topology are given.

متن کامل

A Grassmann integral equation

The present study introduces and investigates a new type of equation which is called Grassmann integral equation in analogy to integral equations studied in real analysis. A Grassmann integral equation is an equation which involves Grassmann (Berezin) integrations and which is to be obeyed by an unknown function over a (finite-dimensional) Grassmann algebra Gm (i.e., a sought after element of t...

متن کامل

Integral Tqft for a One-holed Torus

We give new explicit formulas for the representations of the mapping class group of a genus one surface with one boundary component which arise from Integral TQFT. Our formulas allow one to compute the h-adic expansion of the TQFT-matrix associated to a mapping class in a straightforward way. Truncating the h-adic expansion gives an approximation of the representation by representations into fi...

متن کامل

Grassmann Integral Representation for Spanning Hyperforests

Given a hypergraph G, we introduce a Grassmann algebra over the vertex set, and show that a class of Grassmann integrals permits an expansion in terms of spanning hyperforests. Special cases provide the generating functions for rooted and unrooted spanning (hyper)forests and spanning (hyper)trees. All these results are generalizations of Kirchhoff’s matrix-tree theorem. Furthermore, we show tha...

متن کامل

Hyperforests on the Complete Hypergraph by Grassmann Integral Representation

We study the generating function of rooted and unrooted hyperforests in a general complete hypergraph with n vertices by using a novel Grassmann representation of their generating functions. We show that this new approach encodes the known results about the exponential generating functions for the different number of vertices. We consider also some applications as counting hyperforests in the k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2019

ISSN: 1029-8479

DOI: 10.1007/jhep12(2019)014